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Transient Response of a Distillation Column Plate. Part 1. 
Theory: Five Models and Their Fourier Transforms 

CHESTER N. SITTEL, JR." and GERALD T. FISHER 
DEPARTMENT OF CHEMICAL ENGINEERING 
VANDERBILT UNIVERSITY 
NASHVILLE, TENNESSEE 37240 

Abstract 

Five models are used to describe the transient behavior of the liquid composi- 
tion on a distillation column bubble cap tray when the liquid composition 
entering the tray undergoes a composition transient. The assumptions required 
for the models are discussed. The equations are transformed by the Laplace 
operator, and the solutions are left in the frequency response form for com- 
parison with experimental data. The models involviflg distance, either across a 
tray or through a downcomer, are solved to relate the composition to the meas- 
urable compositions in the downcomers. The five models investigated are 
models of ( I )  a perfectly mixed tray; (2) plug flow across a tray; (3) a perfectly 
mixed plate with a time lag in the downcomer; (4) longitudinal dispersion 
(Taylor's) across the tray; and ( 5 )  longitudinal dispersion with dead zones on 
a tray. 

INTRODUCTION 

A mathematical description of the composition changes in a plate 
distillation column operating at unsteady state is needed for predicting 
behavior of control systems and, to an extent, for predicting startup 
behavior of a plant. Various coniposition models have been previously 
described, and a satisfactory means of model comparison and evaluation 

* Present address: Tennessee Eastman Company, Kingsport, Tennessee 37662. 
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420 SITTEL AND FISHER 

is needed. A mathematical description and the Fourier transforms are 
presented for five models of plate composition behavior. The models are: 
(1) the perfectly mixed plate; (2) plug flow across a plate; (3) the perfectly 
mixed plate with time lag for flow between plates in the downcomer; 
(4) turbulent (Taylor’s) dispersion on a plate; and (5) dead zones (with 
dispersion) on a plate. A subsequent part presents experimental data and 
statistical comparisons of the five models. 

In order to examine the effects of liquid phase mixing, a special case 
of plate composition changes with no mass transfer with the vapor (no 
distillation) has been examined in a subsequent part. The input plate 
concentration changes were assumed to be pulse changes, i.e., a change 
of concentration and a return to the same base line; this technique 
affords better model discrimination, is readily performed experimentally, 
and is adapted to computerized data reduction. 

Literature Review 

Endtz, Jansen, and Vermeulen ( I ) ,  Rademaker (2), and Berg and 
James (3) reported tests of distillation dynamics in terms of generalized 
observations. They found that temperature, pressure, and flow rate 
changes were instantaneous compared to composition changes. Rosen- 
brock (4)  described three regions in a distillation transient response curve : 
(1) secondary effects (vapor flow, liquid flow, pressure, and temperature); 
(2) intermediate region where mass transfer controls ; and (3) the final 
steady state value. He also noted that (5) composition changes had 1 hr 
time constants and were more significant than liquid flow changes with 
time constants on the order of 1 to 2 min. 

Lamb, Pigford, and Rippin (6) derived a perfectly mixed distillation 
plate model for unsteady state composition as a function of liquid flow 
rate, equilibrium composition, and tray holdup. The model was examined 
by analog computer simulation and was tested by Gerster et al. (7-9). 
Martin (10) examined the response of a 12-plate column separating 
methanol and water with Lamb’s model. He found that the model pre- 
dicted the first portion (6 min) of the response, but it was inadequate for 
long times. He observed that the model was adequate for control simula- 
tion. Since the model predicted the correct magnitude and time lag of 
the initial output disturbance, the controller-system response could be 
examined to see if it produced the desired correction action. Also, Martin 
noted that the transient stripping factor was in error as much as 200%. 
Huckaba et al. (11, I,?) derived a model for perfect mixing of composition 
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TRANSIENT RESPONSE. I 42 I 

and enthalpy on the distillation plate. The model was tested in a tertiary 
butanol-water system in a 10-in. diameter, 12-plate bubble cap column. 

Armstrong et al. (13-17) and Brown (18) have also examined the per- 
fectly mixed plate model. Voetter (19) derived the frequency response 
form of the perfectly mixed model. His major contribution was an analysis 
of the error in assuming negligible vapor holdup, an adiabatic column, 
nonconstant stripping factor, and incomplete tray efficiency. Voetter 
stated that the maximum error from each assumption could be 20% and 
that the combined assumptions could result in a maximum error of 40 %. 
However, he observed that this error was not excessive in control theory. 

Lewis (20) derived an expression for the Murphree efficiency for liquid 
in plug flow across the plate. 

Several authors (13, 14, 20-45) have realized that the perfectly mixed 
plate model is an inexact description of mixing on distillation plates. 
Moczek et al. (37) and Armstrong and Wilkinson (13) suggested that a 
plate be modeled by perfectly mixed and plug flow transfer functions. 
Gatreaux and O’Connell (31) and Sakata (40) examined Kirshbaum’s 
series of perfectly mixed pools model. With dye testing, Sakata found 
that plates were described by 1.06 to 1.21 pools. Quentin (39) correlated 
his data as a series of perfectly mixed tanks. 

Foss and Gerster (28) stated that the liquid on a sieve tray was mixed 
to  some unknown extent between plug flow and perfectly mixed. Oliver 
and Watson (38) said that mixing was between one-quarter and three- 
quarters complete in an 18-in. diameter tower. Garner and Porter (30) 
noted that mixing in the froth promoted mass transfer and eddy diffusion. 
They observed that a plate was partially mixed, and that for a bubble 
cap plate the effective diffusion coefficient was from 1.9 to 70 times greater 
than molecular diffusion. 

Gerster et al. (32, 46)  derived the turbulent dispersion model for mass 
transport across a bubble cap plate. Foss et al. (29) and Quentin (39) 
found that the change in variance about the mean of a pulse tracer curve 
increased linearly with tray length. For a dirac input, the dispersion 
model predicts this linear increase in the variance. In the American 
Institute of Chemical Engineers’ report (46), the eddy diffusion coefficient, 
D,, was correlated by the equation 

(DE)0.5 = 0.0124 + 0.0171~ + 0.00250L + 0.0150W 

Johnson and Marangozis (36) derived the splashing model for mixing. 
This model was mathematically similar to the eddy diffusion model (21, 
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422 Sl lTEL AND FISHER 

32, 42). Barker and Self (2.9, Gilbert ( 3 3 ,  and Welch, Durbin, and 
Holland (44) analyzed mixing on distillation plates with the dispersion 
model. Wilkinson and Armstrong (45) derived a model equivalent to the 
dispersion model by a Taylor’s series expansion of the change in com- 
position with distance. They found this model favorably described 
composition-time data from a step change in feed composition. 

Holland (47)  and Tetlow et al. (48) considered a distillation plate as 
composed of parallel segments in which fluid transfer was by bypass, 
plug flow, and perfect mixing mechanisms. Characteristic curves were 
presented for each flow pattern. 

Rosenbrock (49) and Williams (50) have compiled literature reviews on 
distillation models. Williams lists the physical parameters which must be 
included in a complete mathematical model of distillation. Williams 
commented that the question that remains unanswered is which model is 
the most valid, since a complete mathematical description is computa- 
tionally unmanageable at the present time. 

Hopefully this work fulfills Rosenbrock’s (49) wish for an experimental 
comparison of distillation models. The present study is the first reported 
work in which the perfectly mixed, plug flow, perfectly mixed plate with 
time lag, dispersion, and dead zone models for distillation have been 
examined by frequency response techniques. Also, this is the first work 
that mathematically considers the variation of the vapor composition for 
plate n as a function of the model-time-distance-concentration variation 
on platen - 1. 

THEORY 

Heat, mass, and momentum transport must be included in a complete 
mathematical description of distillation. The complete model would be 
arduous, if not impossible, to solve. In this study, several simplified models 
are compared using their frequency response forms and data from pulse 
testing. 

Perfectly Mixed Plate Model 

The perfectly mixed plate model has been presented in various forms 
by several authors (6-8, 11-18, 39, 51-56). The usual assumptions and 
those made in this derivation are: 

(a) The liquid on each plate unit (bubble cap tray and downcomer) is 
perfectly mixed. 
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TRANSIENT RESPONSE. I 423 

(b) The time constants for fluid and thermal transfer are negligible com- 

(c) Vapor holdup is negligible compared to liquid holdup. 
(d) The column is essentially adiabatic. 
(e) The steady state efficiency is not affected by the passage of the 

pulse across the plate. 
(f) Liquid and vapor flows are not affected during the transient periods, 

so that the liquid holdup on the plate is constant. 
(g) A linear equilibrium relationship is valid. 

pared to mass transfer. 

Rosenbrock (49) and Quentin (39) stated that thermal and flow quan- 
tities reach steady state in one-fifteenth to one-thirtieth the time required 
for mass transfer. This validated assumption (b). 

Huckaba and Danly (11) have shown assumption (c) is sound for at- 
mospheric distillation. For the system studied, the liquid residence time 
was about 30 sec whereas vapor residence time between plates was ap- 
proximately 1 sec. 

Quentin (39) found assumption (e) valid for his work. 
Assumption (f) is confirmed if the molar latent heats of vaporization 

are approximately equal and the disturbance is small compared to the 
average flows. For the benzene-carbon tetrachloride system, the latent 
heats were 7170 and 7350 cal/g mole, respectively, and the liquid molar 
densities at 172 "F were 0.01035 and 0.00955 g moles/ml, respectively. 
The average change in mole fraction on the test plate was approximately 
0.06. The theoretical equilibrium line slope varied from 1.09 to 1.06. 
These facts confirm assumption (g). 

The calculated heat loss was less than 10% of the heat input, approxi- 
mating assumption (d). 

Assumption (a) distinguishes this model from the other models. The 
validity of this assumption is the model's ability to best describe the 
data. 

The unsteady state mass balance for the perfectly mixed tray is: 

H"= - dx T ( t )  vy,- 1 T ( t )  + Ex,+ IT( t )  - vy: - Zx,T(r) (1) dt  

If the liquid and vapor mole fractions are redefined as a steady state 
value X and j and a transient contribution x ( t )  and y( t ) ,  then Eq. (1) is 

4 A t )  - 
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424 SITTEL AND FISHER 

A substitution into Eq. (2)  of the steady state mass balance, 

and the values from assumption (g) 

and 

(6) 
- d x  ( t )  - 
HL = m'Vx,,_,(t) - ( m P +  L)x,(t) + t x , + , ( t )  

dt 

The input function is the mole fraction entering plate n from plate 
n + 1, x,+ , ( t ) ,  which can be experimentally measured, and the vapor 
input function is calculated from the model applied to plate n - 1. To 
calculate x,,- ,( t) ,  the additional assumption that x , ' - ~  = jX,,-.2, the total 
response is the steady state response (i.e., the transient response is in- 
significant and so much later in time than the response on plate n). 

Equation (6) written for plate n - 1 is 

- dx,, - , 
dt 

H - -  - Ex&) - (m'V + L)x , - , ( t )  

The Laplace transforms of Eqs. (6) and (7) are 

R m' P 
=SX,(S)  = T X,- 1 (s) - L L 

-SX,-,(S) = X,(S) R' 
z 

since the initial conditions were 

X,(O) = 0 

X , - , ( O )  = 0 

c( = RIE 
= mV/L 

p' = m'V/iE 
a' = R'IZ 

and 

In terms of the parameter groups 
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TRANSIENT RESPONSE. I 425 

Equations (8) and (9), solved for Xn(s), give 

The model frequency response has both real, Rp(m) and imaginary, Ip(m), 
parts. 

(17) 
and 

(1 8) 
where 

B‘W‘ + 1) 
(P’ + 112 + (am)” 

ARD = + 1 - - 

fi’ct’w 

(B’ + + (am)’ 
ATD = CIW + 

One observes that 

where Xn,p(w) is the predicted output of the model. 

Xn- can be measured inside the system. 

the terms m and m’ are zero. 

It may be worthwhile to note that Eq. (8) can be used as the model if 

For testing the mixing assumptions, the model without mass transfer, 

The flow model corresponding to Eq. (8) is 

and the frequency response forms are 

and 
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426 S I T E L  AND FISHER 

Plug Flow Model 

(a) is replaced by 
The plug flow model uses assumptions (b) through (g). Assumption 

(a’) The fluid moves across the tray with no horizontal mixing, the 
effect of a velocity profile is ignored, and the liquid composition is ho- 
mogeneous in the vertical direction. 

The following additional assumption is required : 

(h) Flow on a rectangular plate describes the flow geometry of a bubble 
cap plate, 

A differential mass balance applied to a plate segment gives 

Substitution of the sum of the steady state and the transient expressions 
for xT and yT and the mass transfer relations, and subtracting the steady 
state equation 

gives the transient plug flow model 

If the dimensionless distance 

5 = ZlZ 

and the holdup expression 

A = pFpLwhz 

are substituted into Eq. (27) along with the parameters defined pre- 
viously in Eqs. (12) through (15), 

for plate n, and 
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TRANSIENT RESPONSE. I 427 

for plate n - 1. 
The boundary conditions for the plug flow model are 

x,(l,O) = 0 (32) 

x,(O,t) = ~ , , + ~ ( t )  for t 2 0 (33) 

x n -  l(C>O) = 0 (34) 

~ , , - ~ ( l , f )  = x, ( t )  for t 2 0 (35) 

~,[xil(C,t)l = Xfl(c,s) (36) 

The Laplace transform of Eqs. (30) and (31) 

gives 

and 

= (a’s + p’)x,-,(l,s) 
4 

The solution of Eq. (38) is 

A’,,- l(l,s) = ~ ~ ( 1 , s )  e(a’s+fl‘)(c-l) (39) 

This equation, substituted into Eq. (37) and solved for Xn(5,s), gives 

X,,(C,s) = x,+ I(s) e-(ols+P)c 

(40) 
The solution for X,,(l,s), the solution at the point of measurement, is 

(41) 

The real and imhginary parts of the predicted output of Eq. (41) are 
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428 SITTEL AND FISHER 

and further, 

The flow model for testing mixing without mass transfer is 

a;= ax (5  $1 - axn(5,s)  
at 

for which the Laplace transform is 

X,(s) = X,+,(s) FQS 

and the frequency response solution is 
(53) 

Rp(w) = R,, l(w) cos(0tw) + I,+ l(w) sin(ao) 

Ip(w) = I,+ l(w) cos(aw) - R,, l(w) sin(aw) 

(54) 

(55 )  

Perfectly Mixed Plate with Time Lag 

This model considers the concentration on the plate to be uniform, 
i.e., perfect mixing. The downcomers, which couple the plates, are de- 
scribed by a plug flow model with no interphase mass transfer. Armstrong 
and Wilkinson (13), Rose and Williams (57), and Moczek et al. (37) have 
investigated this model. 
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TRANSIENT RESPONSE. I 429 

Assumptions (a) through (g) apply, and an additional assumption (h), 
that the downcomer exhibits liquid phase plug flow with no interphase 
mass transfer is required. 

Equation (6) modified for this case is 

Downcomer composition is described by 

where f i D  is the molar downcomer holdup (moles). 

the boundary condition 
The Laplace transform solutions of Eqs. (56) and (57) are connected by 

X;(S) = X,(O,s) at C = 0 (58)  

to give (at the point of measurement = 1) 

where 

The Laplace solution without mass transfer is 

xn(S) = X ~ + l ( S )  exp(-zds)/[aS + l1 (61) 
The real and imaginary portions of the predicted response are 

Rp(w) = R,+ ,(w)[cOs(zdw) - M U  Sin(Tdw)] 
+ I,, l(w)[aw cos(Tdw) + sin(z,w)] (62) 

and 

Ip(o) = l,, l(w)[cos(zdw) - CIW sin(z,w)] 
- R, -t- l(w)[~w cOs(zd0) + sin(~,w)] (63) 

Turbulent Dispersion Model 

The eddy dispersion model assumes that the fluid moves across the 
plate with mixing due to the motion of turbulent eddies. One assumes the 
mathematical description for diffusion is valid for eddy transport. 
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430 SllTEL AND FISHER 

The dispersion model has been discussed by several authors (21, 23, 
32, 34, 41, 42, 44). Johnson and Marangozis (36) and Wilkinson and 
Armstrong (45) have derived mathematically similar models. Several 
authors (13, 14, 20-45) have noticed concentration gradients on distilla- 
tion plates, and that plate mixing is due to eddies moving rapidly through 
the foam on the plate. 

For this derivation assumptions (b) through (h) apply, and assumptions 
(a) and (a') are replaced by 

(a") The fluid mixing is analogous to diffusion; and the effects of 
radial dispersion, velocity profile, and molecular diffusion are negligible, 
and liquid concentration is homogeneous in the vertical direction. 

A differential mass balance applied to the plate gives 

where D, is the eddy diffusion or turbulent dispersion coefficient. The 
transient equation for plate IZ is 

where 

q = Z 2 / D L  (66) 

The boundary conditions for Eq. (65) and for this equation written for 
plate n - 1 are: 

xn(i,O) = 0 (67) 

x,(O,t) = x,,(t) for t 2 0 (68) 

x,,.-l(l,t) = x,(l,t) for t 2 0 (71) 

lim x,- l((,t) = 0 
c+-m 
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43 I TRANSIENT RESPONSE. I 

It should be noted that for C > 1, x , - , ( [ , t )  is zero and similarly x,(l,t) 
= 0 for [ < 0. 

The solution for X,-  l(C,s) is 

(73) 
where 

q' = Z 2 / D i  (74) 
The solution for Eq. (65) for A', at the point of measurement is 

X,(s) = X,(l,s) = Xn+l(s)e*/{l + G[1 - e(JI-JI"]} (75) 
where 

(77) 

The Laplace transform solution of the model without mass transfer is 

The frequency response solution for the predicted output of the model 

R,(w) = (M.R.)[cos(P.A.) R,+ (w) - s i n ( n )  I,, l(w)] (80) 

I,(w) = (M.R.)[cos(n)  I,+ l(w) + s i n ( m )  R,+ 1(0)] (81) 

is 

where 

(M.R.) = exp(l? 20( - 2a '[ 1 + (?I*] cos 6} 

(P.A.) - = -- ([ 1 + (4:w) __ '1 sin 6) 
2a (83) 
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(84) 

The Perfectly Mixed Dead Zone Model 

A dead zone model was first proposed by Turner (58). Hays (59) in- 
vestigated a modification of this model for tracer mixing in river channels. 

Assumptions (a”) through (h) are applicable. Tn addition the following 
assumption must be made: 

(i) In contact with the main stream, the active zone, there exists a 
perfectly mixed dead zone; mass can be transferred from the stream to 
the dead zone and vice versa; and all the dispersive flow is in the active 
zone. 

A mass balance applied to the active zone gives, for plate 11 

aZXnT(Z,t) 21 aXnT(z, t )  -______ dXnT(z,t) - DL ___- 
at az2 pFpih1v 82 

and for the perfectly mixed dead zone, according to Hays (59, 60), 

The steady state equations for plate n are 

for the active zone; and for the dead zone 

Usually mass transfer coefficients are written as “Ka” where a is the 
ratio of the contact area to the main stream volume 

a = PZ/whZ = P/wh (89) 
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TRANSIENT RESPONSE. I 433 

and for the dead zone 

d = PZ/AdZ = P/A, (90) 

and Kd is the mass transfer coefficient based on the dead zone volume. 
The boundary conditions for plate n are 

(91) x,,(O,t) = x,,+,(t) for t 2 0 

and for plate n - I ,  

~ , , - ~ ( l , t )  = x, , ( l , t )  for t 2 0 (95) 
lim X , , - ~ ( ( J )  = 0 

6-1-m 

X,-,(i,O) = 0 
and 

Xn- 1 ,D(O> = 

with the restrictions that 

where 
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434 S I T E L  AND FISHER 

and where 

T = l / K d  and 7' = l /K 'd  (105) 

0 = Ka/Kd = aid = A J A ,  (106) 

0' = K'a/K'd ( 107) 

Similarly, the mixing model is 

X,(s) = X,(l,s) = X,,+,(s) exp 
2c! 2u 

Re = (M.R.) cos(P.A.) 

Ie = (M.R.) sin(P.A.) 

and where 

[ l  + (~?)~]*cos 6 ( 1  13) 
v l 9  4a2w2ze 
2E 2 q  q[(7co)2 + 11 

(M.R.) = - - - 1 1  + 

[I + (a)']* sin 6 (1 14) 

The complete derivations of these equations along with expanded 
frequency response forms are available elsewhere (41). 

The Advantage of Pulse Testing and Fourier Analysis 

A principal advantage of pulse testing is that a smaller amount of 
tracer is needed than in step or sinusoidal testing; therefore, liquid and 
vapor flow rate changes are less drastic. 

A closed form of the time domain solution is possible for the flow 
models of the perfectly mixed plate, plug flow, perfectly mixed plate with 
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T R A N S I E N T  RESPONSE. I 435 

downcomer time lag, and dispersion model for step and dirac inputs. No 
simple closed solution is available for the dead zone flow model. The 
mass transfer models have not been solved in a closed time domain form. 
All these models can be analyzed with frequency response techniques, 
making a closed time solution form unnecessary. 

When the input and output pulses are measured inside the system, 
parameter fitting can be accomplished with frequency response techniques, 
and no assumptions are required about the form of the input. In time 
domain solutions the input usually must be mathematically described, 
such as a step, sinusoid, or impulse input. Physically producing such an 
input can be extremely difficult. 

Finite difference solutions either in analog or digital simulations require 
more computer time than a frequency response solution. 

For testing the linear models of this work, the easiest and most direct 
method of investigation was pulse testing and Fourier transform analysis. 

Fourier Transform of the Pulses 

The predicted output is calculated from the frequency response of the 
model multiplied by the frequency description of the input pulse. The 
predicted output is compared to the output pulse Fourier transform by 
regression techniques. Hays (59) and others (35, 61, 62) have described 
the method of calculating the pulse Fourier transforms. The Fourier 
transform is restricted to a special case of the Laplace transform with the 
Laplace transform variable s having no real part (i.e., s =jo), and the 
input function having a zero value for times less than t = 0. 

Pulse segments, composed of equally spaced time points, are approxi- 
mated with a second degree polynomial 

y i + l  = a i + l t 2  + b i + l t  + c i + l  (117) for T i + ,  I t I Ti 

The frequency response forms for the i + 1 th approximating segment is 

1 -[ai+ - ail sin(Tio) - [bi+ - (2aiTi + b,)] cos(tio) 

(1 18) 

1 l i + l  = - - ail cos(Tiw) - [bi+l - (2a,Ti + b,)] sin(tio) 
o2 0 

(119) 
{2 

The real and imaginary parts for the entire pulse are calculated by summing 
over all approximating sections for each desired frequency. 
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Regression 

fitting procedure. This quantity is defined as 
The minimum integral of the squared error is a convenient basis for a 

CD = Im [y,(t) - yP(t) l2  dt = jm [e(t)I2 dt 

7 1 0  ' c m  
(120) 

0 0 

Parseval's theorem applied to Eq. (20) gives 

(121) 
m 

CD = j" [e(t)l2 dt = - 1~(jo)12 do 
0 

where E(jw) is the Fourier transform of e( t ) .  Equation (121) shows that 
there is a direct correlation between minimization of the squared error in 
the time domain and a minimization of the absolute squared error of the 
frequency response. 

E(jo)  is defined as 

W w )  = Y , ( N )  - Y P ( M )  (122) 

where Y,(jw) and Yp( jo)  are the transforms of yo ( [ )  and yp( t ) ,  respectively, 
or in terms of real and imaginary quantities 

@ = 'c ([R,(o) - RP(o)l2 + [I,(o) - I,(O)]~) do 
m 

(123) 

In data processing the CD function must be made discrete. Allowing 

n o  

Z(w,,) to be the integrand in Eq. (123), the @ relation is 

1 "  
@ = - c Z(w,) 

71 

Summation over an infinite range of frequencies is physically im- 
practical, so the summation is truncated at some finite frequency limit, 
w,. Sokolnikoff and Redheffer (63) state that the partial sums of a Fourier 
series give a smaller mean square error than any other linear combina- 
tion, and successive terms in the Fourier series tend to zero as the number 
of terms increases. These statements imply that the function has been 
approximated by the best least squares method available, and that if o, 
has been chosen sufficiently large, the loss in accuracy is small. Truncation 
of the frequency spectrum is beneficial in that it discards erroneous data 
fluctuations which occur at high frequencies. These fluctuations are 
caused by inaccuracies in the data and the use of parabolic segments to 
represent continuous tracer curves. 
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Data Reduction 

Linear relationships existed between concentration and conductivity, 
and between refractive index and mole fraction of the form 

u = 4 9 + p  (125) 
In pulse testing the function of interest is the deviation term; the 

base or steady state value must be subtracted from the measured value; 
thus 

u - "0 = 4(Y - 9 0 )  ( 126) 

Ve = qce ( 127) 

or 

These constants were determined in the calibration of the conductivity 
cells and the recording refractometers. 

In the distillation column the sample time lag had to be corrected, so 
that the concentration was a function of time at the downcomer base, not 
at  the refractometers. The correction was made by adding sampling time 
back to the transformed data with the terms 

RAW) = R,",(W) cos(Ts4 - sin[Tsw4,&)1 

I,(w) = Rme(w) sin(T'w) + cos[TsoIme(w)l 

( 128) 

(129) 

and 

where these terms are defined as 

R,(w), I,(w) = corrected real and imaginary data parts 

R,,(w), Ime(w) = measured transform data 

T, = sample time lag 

The sample time lag was calculated from the sample lines flow rate 
taken at the end of each run. 

SYMBOLS 

A ,  
A ,  

a 

area of active zone (ft') 
area of dead zone (ft') 
ratio of contact area to volume of the main 
stream (ftz/ft3) 
polynomial coefficients a,, a2, a3, a4, a ,  ai+ 
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d 

di 

G 

Gd 

G 
9 

go 

R 
fill 

h 
I 

polynomial coefficients 
longitudinal or eddy dispersion coefficient 
(ft2/sec) 
ratio of contact area to volume of the dead 
zone (ft2/ft3> 
difference between pairs of data when sub- 
jected to two effects 
frequency domain error 
time domain error 
F factor, uJpV, [ft3 square root of gas 
density in Ibm/ft3/sec (square feet of bubbl- 
ing area)] 
repetitive frequency domain grouping in 
dispersion model, 

repetitive frequency domain grouping in 
dead zone model, 

effective deviation in measured quantity, 
9 - go 
effective deviation quantity for plates n, 
n + 1, and n - 1, respectively 
normalized variable 
measured variable, either conductivity or 
refractive index 
base conductance or steady state refractive 
index 
molar holdup (Ib moles) 
molar holdup in the downcomer (Ib moles) 
total liquid height on a plate (ft) 
imaginary part of the i + l th approximat- 
ing segment 
corrected imaginary part of the data 
imaginary part of the model function 
imaginary part of the measured transform 
data 
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L 

z 
m 

m' 

P 
P 
4 
R 

Nd 

t 
td 

t0.95 

u 

imaginary parts of the data for plates n, 
n + 1 ,  and n - 1, respectively 
predicted imaginary part of the model 
imaginary number, ,/=I 
mass transfer coefficient (Ib moles/sec ft') 
mass transfer coefficient, K' = Kpip, (ft/ 
sec) 
L factor, liquid flow rate [gal/min (average 
feet tray width)] 
Laplace transform operator 

L,(g(t))  = Jrn g(t)e-"' dt 

molar liquid flow rate (lb moles/sec) 
constant in equilibrium relationship y = 
mx + b 
equilibrium relationship on plate n - 1 
mass flux from dead zone (lb moles/ft2 sec) 
contact length between zones (ft) 
a constant 
a constant 
real part of the i + lth approximating 
segment 
corrected real part of the data 
real part of the model function 
real measured part of the transformed data 
real parts of the data for plates n, n + 1, 
and n - 1, respectively 
real predicted part of the model 
Laplace transform variable 
sample time lag (sec) 
time at the end of the lst, 2nd, and ith 
approximating segments, respectively 
time (sec) 
Student's statistic calculated for the dif- 
ference variable 
value for the two sided t statistic for the 
95 % confidence limit 
u factor, linear gas velocity [ft3/sec (square 
feet of tray bubbling area)] 

0 
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2, 

W 

X 
W 

effective deviation in measured quantity 
molar gas flow rate (lb moles/sec) 
mass variable either concentration or mole 
fraction 
base concentration or steady state mole 
fraction 
outlet weir height (in.) 
width of distillation tray (ft) 
total length of travel on a distillation plate 

Laplace transform of mole fraction func- 
tion on plates n, n + 1, and n - 1, respec- 
tively 
Fourier transform of mole fraction func- 
tion on plates n, n + 1, and n - 1, respec- 
tively 
predicted output of model for plate n 
composition on a perfectly mixed plate in 
the perfectly mixed plate with time lag 
model 
liquid mole fraction 
liquid mole fraction in dead zone 
total liquid mole fraction, xT = x( t )  + X 
transient liquid mole fraction 
steady state liquid mole fraction 
Fourier transform of observed output 
Fourier transform of predicted output 
vapor phase mole fraction 
transient vapor mole fraction 
observed output 
predicted output 
first and second approximating polynomials 
total vapor mole fraction yT = y ( t )  + 
steady state vapor mole fraction 
total tray length (ft) 
integrand of Eq. (124) 
length on a tray (ft) 
residence time on tray n and n - 1, re- 
spectively (sec) 
mass transfer terms on trays n, n - 1, 

(ft) 
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Az 
i 

vl, vl' 

8, 9' 

P F  

PL 
P L  

5, z' 
c 

n - 2, respectively, either m p/'lLor AK,arn/ 

incremental distance (ft) 
reduced length, i = z/Z 
dispersion coefficient function, D, /X2 ,  on 
plates n and n - 1, respectively (sec) 
ratio of dead zone cross sectional area to 
active zone area for plates n and n - 1, 
respectively 
froth density cubic feet of liquid per cubic 
foot of froth 
liquid density (Ibm/ft3) 
clear liquid density (lb moles/ft3) 
indicates summation 
inverse of dead zone mass transfer coefficient 
times the ratio of dead zone cross sectional 
area to volume on plates n and n - 1, 
respectively (sec) 
residence time in downcomers on plates n 
and n - 1, respectively (sec) 
sum or integral of the squared error 
repetitive frequency domain grouping in 
dispersion model, 

EPPP' 

2a 1 - 2a "Jl + t ( & S  + p> 

repetitive frequency domain grouping in 
dead zone model, 

" - ' \ l 1 + ; 3 1 + L ) + P ]  zs + 1 2cr 2a 

repetitive frequency domain grouping in 
dispersion model, 

repetitive frequency domain grouping in 
dead zone model, 

g' 2a, + 7 V ' J  1 + ","" 7 a's ( 1 + ___ 0' )+8'] 
2a 5's + 1 
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$+ repetitive frequency domain grouping in 
dispersion model, 

- + - 
2cr 2cr 1 + -(CIS + P) 

w frequency (sec-') 
w, cutoff frequency (sec- ') 
* denotes convolution 

REFERENCES 

1. J. Endtz, J. M. L. Janssen, and J. C. Vermeulen, Plant and Process Dynamic Char- 
acteristics, Butterworths, London, 1957. 

2. I. 0. Rademaker, Proceedings o f the International Symposium on Distillation, 
Institution of Chemical Engineers, London, 1960, p. 190. 

3. C. Berg and I. J. James, Jr., Chem. Eng. Progr., 44(4), 307 (1948). 
4. H. H. Rosenbrok, Trans. Inst. Chem. Eng., 40, 35 (1962). 
5. H. H. Rosenbrock, Chem. Eng. Progr., 58 (9), 43 (1962). 
6. D. E. Lamb, R. L. Pigford, and D. W. T. Rippan, Chem. Eng. Progr., Symp. Ser., 

7. M. F. Baber and J. A. Gerster, Amer. Inst. Chem. Eng. J . ,  8(3), 407 (1962). 
8. W. L. Luyben, V. S. Verneuil, Jr., and J. A. Gerster, Amer. Inst. Chem. Eng. J. ,  

9. J. S. Sproul and J. A. Gerster, Chem. Eng. Progr., Symp. Ser., 59(46), 21 (1962). 
10. D. C. Martin, Unpublished Ph.D. Thesis, North Carolina State of the Univ. of 

North Carolina at Raleigh, Univ. Microfilms, Ann Arbor, Michigan, 65-14, 121 
(1965). 

57(36), 132 (1961). 

10(3), 357 (1964). 

11. C. E. Huckaba and D. E. Danly, Amer. Inst. Chem. Eng. J., 6(2), 335 (1960). 
12. C. E. Huckaba, F. P. May, and F. R. Franke, Chem. Eng. Progr., Symp. Ser.,59(46), 

13. W. D. Armstrong and W. L. Wilkinson, Trans. Inst. Chem. Eng., 35, 352 (1957). 
14. W. D. Armstrong and R. M. Wood, Ibid., 39, 80 (1961). 
15. W. D. Armstrong and R. M. Wood, Ibid., 39, 65 (1961). 
16. W. L. Wilkinson and W. D. Armstrong, Plant and Process Dynamic Characteristics, 

17. R. M. Wood and W. D. Armstrong, Chem. Eng. Sci., 12,272 (1960). 
18. C .  R. Brown, Jr., Unpublished Ph.D. Thesis, Case Institute of Technology, Univ. 

19. H. Voetter, Plant and Process Dynamics Characteristics, Butterworths, London, 

20. W. K. Lewis, Jr., Ind. Eng. Chem., 28, 399 (1936). 
21. R. Aris, Chem. Eng. Sci., 10, 80 (1959). 
22. J. A. Aseltine, Transform Method in Linear System Analysis, McGraw-Hill, New 

23. P. E. Barker, and M. F. Self, Chem. Eng. Sci., 17, 541 (1962). 
24. D. P. Campbell, Process Dynamics, Wiley, New York, 1958. 

38 (1962). 

Butterworths, London, 1957, p. 56. 

Microfilms, Inc., Ann Arbor, Michigan, 58-5568 ( I  958). 

1957, p. 73. 

York, 1958. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



TRANSIENT RESPONSE. I 443 

25. H. S .  Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press, 

26. A. Cholette and L. Cloutier, Can. J. Chem. Eng., 37, 105 (1959). 
27. P. V. Dankwerts, H. Sawistowski, and W. Smith, Proceedings of the  ~nternutjonul 

Symposium on Distillation, Institution of Chemical Engineers, London, 1960, p. 7. 
28. A. S. Foss and J. A. Gerster, Chem. Eng. Progr., 52(1), 28-J (1956). 
29. A. S. Foss, J. A. Gerster, and R. L. Pigford, Amer. Inst. Chem. Eng. J. ,  4 (2), 231 

30. F. H. Garner and K. E. Porter, Proceedings of the International Symposium on 

31. M. F. Catreaux and H. E. O’Connell, Chem. Eng. Progr., 51(5), 232 (1955). 
32. J. A. Gerster, A. B. Hill, N. N. Hochgraf, and D. G. Robinson, “Tray Efficiencies 

in Distillation Columns, Final Report from the University of Delaware,” American 
Institute of Chemical Engineers, New York, 1958. 

London, 1947. 

(1958). 

Distillation, Institution of Chemical Engineers, London, 1960, p. 43. 

33. T. J. Gilbert, Chem. Eng. Sci., 10, 243 (1959). 
34. E. R .  Gilliland and C. M. Mohr, Chem. Eng. Progr., 58(9), 59 (1962). 
35. J. R. Hays, W. C. Clements, Jr., and T. R. Harris, Amer. Inst. Chem. Eng. J., 13(2), 

36. A. I. Johnson and J. Marangozis, Can. J. Chem. Eng., 36, 161 (1958). 
37. J. S. Moczek, R. E. Otto, and T. J. Williams, Chem. Eng. Progr., Symp. Ser., 61(55), 

38. E. D. Oliver and C. C. Watson, Ibid., 2, 18 (1956). 
39. G. H. Quentin, Unpublished Ph.D. Thesis, Iowa State Univ. of Science and 

Technology, Univ. Microfilms, Inc., Ann Arbor, Michigan, 65-12, 491 (1965). 
40. M. Sakata, Chem. Eng. Progr., 62 ( I I ) ,  98 (1966). 
41. C. N. Sittel, Jr., Unpublished Ph.D. Thesis, Vanderbilt Univ., 1969. 
42. B. D. Smith, Design of Equilibrium Stage Processes, Wiley, New York, 1963. 
43. G. I. Taylor, Proc. Roy. SOC., Ser. A ,  225, 473 (1954). 
44. N. E. Welch, L. D. Durbin, and C. D. Holland, Amer. Inst. Chem. Eng. J., 10(3), 

45. W. L. Wilkinson and W. D. Armstrong, Chem. Eng. Sci., 7, 1 (1957). 
46. American Institute of Chemical Engineers, Bubble Truy Design Manual, New York, 

47. C. D. Holland, Unsteady State Processes with Applications in a Multicomponent 

48. N. J. Tetlow, D. M. Groves, and C. D. Holland, Amer. Inst. Chem. Eng. J. ,  13(3), 

49. H. H.  Rosenbrock, Ibid., 40, 376 (1962). 
50. T. J. Williams, Chem. Eng. Progr., Symp. Ser., 59(46), 1 (1962). 
51. E. C. Deland and M. B. Wolf, Ind. Eng. Chem. Process Des. Develop., 3(2), 100 

52. G. P. Distefano, Amer. Inst. Chem. Eng. J., 14(1) 190 (1968). 
53. G .  P. Distefano, F. P. May, and C. E. Huckaba, Amer. Inst. Chem. Eng. J., I3(1), 

54. F. R. Franke, Unpublished Ph.D. Thesis, Univ. of Florida, Univ. Microfilms, Ann 

55. C. M. M o b ,  Amer. Inst. Chem. Eng. J., II(2), 253 (1965). 
56. H. H. Rosenbrock, Trans. Inst. Chem. Eng., 35, 347 (1957). 

374 ( 1967). 

137 (1961). 

373 (1964). 

1958. 

Distillation, Prentice-Hall, Englewood Cliffs, New Jersey, 1966. 

476 (1967). 

( 1964). 

125 (1967). 

Arbor, Michigan, 61-5773 (1961). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



444 SllTEL AND FISHER 

57. A. Rose and T. J. Williams, Ind. Eng. Chem., 47, 2284 (1955). 
58. G. A. Turner, Chem. Eng. Sci., 7, 156 (1958). 
59. J. R. Hays, “Mass Transport Mechanisms in Open Channel Flow,” Ph.D. Thesis, 

Vanderbilt Univ., 1966. 
60. J. R. Hays and P. A. Krenkel, Mathematical Modeling of Mixing Phenomena in 

Rivers, ZZZ, Advances in Water Quality Improvement, Univ. Texas Press, Austin, 
Texas, 1968. 

61. C. N. Sittel, Jr., W. D. Threadgill, and K. B. Schnelle, Jr., Znd. Eng. Chem. Fundam., 
7, 39 (1968). 

62. C. N. Sittel, Jr., Unpublished M.S. Thesis, Vanderbilt Univ., 1966. 
63. I. S. Sokolnikoff and R. M. Redheffer, Mathematics of Physics and Modern Engine- 

ering, McGraw-Hill, New York, 1958. 

Received by editor October 5,  I972 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
2
4
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


