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Transient Response of a Distillation Column Plate. Part I.
Theory: Five Models and Their Fourier Transforms

CHESTER N. SITTEL, JR.* and GERALD T. FISHER

DEPARTMENT OF CHEMICAL ENGINEERING
VANDERBILT UNIVERSITY
NASHVILLE, TENNESSEE 37240

Abstract

Five models are used to describe the transient behavior of the liquid composi-
tion on a distillation column bubble cap tray when the liquid composition
entering the tray undergoes a composition transient. The assumptions required
for the models are discussed. The equations are transformed by the Laplace
operator, and the solutions are left in the frequency response form for com-
parison with experimental data. The models involving distance, either across a
tray or through a downcomer, are solved to relate the composition to the meas-
urable compositions in the downcomers. The five models investigated are
models of (1) a perfectly mixed tray; (2) plug flow across a tray; (3) a perfectly
mixed plate with a time lag in the downcomer; (4) longitudinal dispersion
(Taylor’s) across the tray; and (5) longitudinal dispersion with dead zones on
a tray.

INTRODUCTION

A mathematical description of the composition changes in a plate
distillation column operating at unsteady state is needed for predicting
behavior of control systems and, to an extent, for predicting startup
behavior of a plant. Various composition models have been previously
described, and a satisfactory means of model comparison and evaluation

* Present address: Tennessee Eastman Company, Kingsport, Tennessee 37662.
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is needed. A mathematical description and the Fourier transforms are
presented for five models of plate composition behavior. The models are:
(1) the perfectly mixed plate; (2) plug flow across a plate; (3) the perfectly
mixed plate with time lag for flow between plates in the downcomer;
(4) turbulent (Taylor’s) dispersion on a plate; and (5) dead zones (with
dispersion) on a plate. A subsequent part presents experimental data and
statistical comparisons of the five models.

In order to examine the effects of liquid phase mixing, a special case
of plate composition changes with no mass transfer with the vapor (no
distillation) has been examined in a subsequent part. The input plate
concentration changes were assumed to be pulse changes, i.e., a change
of concentration and a return to the same base line; this technique
affords better model discrimination, is readily performed experimentally,
and is adapted to computerized data reduction.

Literature Review

Endtz, Jansen, and Vermeulen (J/), Rademaker (2), and Berg and
James (3) reported tests of distillation dynamics in terms of generalized
observations. They found that temperature, pressure, and flow rate
changes were instantaneous compared to composition changes. Rosen-
brock (4) described three regions in a distillation transient response curve:
(1) secondary effects (vapor flow, liquid flow, pressure, and temperature);
(2) intermediate region where mass transfer controls; and (3) the final
steady state value. He also noted that (5) composition changes had 1 hr
time constants and were more significant than liquid flow changes with
time constants on the order of 1 to 2 min.

Lamb, Pigford, and Rippin (6) derived a perfectly mixed distillation
plate model for unsteady state composition as a function of liquid flow
rate, equilibrium composition, and tray holdup. The model was examined
by analog computer simulation and was tested by Gerster et al. (7-9).
Martin (/0) examined the response of a 12-plate column separating
methanol and water with Lamb’s model. He found that the model pre-
dicted the first portion (6 min) of the response, but it was inadequate for
long times. He observed that the model was adequate for control simula-
tion. Since the model predicted the correct magnitude and time lag of
the initial output disturbance, the controller-system response could be
examined to see if it produced the desired correction action. Also, Martin
noted that the transient stripping factor was in error as much as 200 9.
Huckaba et al. (11, 12) derived a model for perfect mixing of composition
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and enthalpy on the distillation plate. The model was tested in a tertiary
butanol-water system in a 10-in. diameter, 12-plate bubble cap column.

Armstrong et al. (/13-17) and Brown (/8) have also examined the per-
fectly mixed plate model. Voetter (/9) derived the frequency response
form of the perfectly mixed model. His major contribution was an analysis
of the error in assuming negligible vapor holdup, an adiabatic column,
nonconstant stripping factor, and incomplete tray efficiency. Voetter
stated that the maximum error from each assumption could be 209, and
that the combined assumptions could result in a maximum error of 409/.
However, he observed that this error was not excessive in control theory.

Lewis (20) derived an expression for the Murphree efficiency for liquid
in plug flow across the plate.

Several authors (13, 14, 20-45) have realized that the perfectly mixed
plate model is an inexact description of mixing on distillation plates.
Moczek et al. (37) and Armstrong and Wilkinson (/3) suggested that a
plate be modeled by perfectly mixed and plug flow transfer functions.
Gatreaux and O’Connell (3/) and Sakata (40) examined Kirshbaum’s
series of perfectly mixed pools model. With dye testing, Sakata found
that plates were described by 1.06 to 1.21 pools. Quentin (39) correlated
his data as a series of perfectly mixed tanks.

Foss and Gerster (28) stated that the liquid on a sieve tray was mixed
to some unknown extent between plug flow and perfectly mixed. Oliver
and Watson (38) said that mixing was between one-quarter and three-
quarters complete in an 18-in. diameter tower. Garner and Porter (30)
noted that mixing in the froth promoted mass transfer and eddy diffusion.
They observed that a plate was partially mixed, and that for a bubble
cap plate the effective diffusion coefficient was from 1.9 to 70 times greater
than molecular diffusion.

Gerster et al. (32, 46) derived the turbulent dispersion model for mass
transport across a bubble cap plate. Foss et al. (29) and Quentin (39)
found that the change in variance about the mean of a pulse tracer curve
increased linearly with tray length. For a dirac input, the dispersion
model predicts this linear increase in the variance. In the American
Institute of Chemical Engineers’ report (46), the eddy diffusion coefficient,
D, was correlated by the equation

(Dp)°5 = 0.0124 + 0.017tu + 0.00250L + 0.0150W

Johnson and Marangozis (36) derived the splashing model for mixing.
This model was mathematically similar to the eddy diffusion model (27,
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32, 42). Barker and Self (23), Gilbert (33), and Welch, Durbin, and
Holland (44) analyzed mixing on distillation plates with the dispersion
model. Wilkinson and Armtrong (45) derived a model equivalent to the
dispersion model by a Taylor’s series expansion of the change in com-
position with distance. They found this model favorably described
composition-time data from a step change in feed composition.

Holland (47) and Tetlow et al. (48) considered a distillation plate as
composed of parallel segments in which fluid transfer was by bypass,
plug flow, and perfect mixing mechanisms. Characteristic curves were
presented for each flow pattern.

Rosenbrock (49) and Williams (50) have compiled literature reviews on
distillation models. Williams lists the physical parameters which must be
included in a complete mathematical model of distillation. Williams
commented that the question that remains unanswered is which model is
the most valid, since a complete mathematical description is computa-
tionally unmanageable at the present time.

Hopefully this work fulfills Rosenbrock’s (49) wish for an experimental
comparison of distillation models. The present study is the first reported
work in which the perfectly mixed, plug flow, perfectly mixed plate with
time lag, dispersion, and dead zone models for distillation have been
examined by frequency response techniques. Also, this is the first work
that mathematically considers the variation of the vapor composition for
plate » as a function of the model-time-distance-concentration variation
on plate n — 1.

THEORY

Heat, mass, and momentum transport must be included in a complete
mathematical description of distillation. The complete model would be
arduous, if not impossible, to solve. In this study, several simplified models

are compared using their frequency response forms and data from pulse
testing.

Perfectly Mixed Plate Model

The perfectly mixed plate model has been presented in various forms
by several authors (6-8, 1/-18, 39, 51-56). The usual assumptions and
those made in this derivation are:

(a) The liquid on each plate unit (bubble cap tray and downcomer) is
perfectly mixed.
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(b) The time constants for fluid and thermal transfer are negligible com-
pared to mass transfer.

(c) Vapor holdup is negligible compared to liquid holdup.

(d) The column is essentially adiabatic,

(e) The steady state efficiency is not affected by the passage of the
pulse across the plate.

(f) Liquid and vapor flows are not affected during the transient periods,
so that the liquid holdup on the plate is constant.

(g) A linear equilibrium relationship is valid.

Rosenbrock (49) and Quentin (39) stated that thermal and flow quan-
tities reach steady state in one-fifteenth to one-thirtieth the time required
for mass transfer. This validated assumption (b).

Huckaba and Danly (/1) have shown assumption (c) is sound for at-
mospheric distillation. For the system studied, the liquid residence time
was about 30 sec whereas vapor residence time between plates was ap-
proximately 1 sec.

Quentin (39) found assumption (e) valid for his work.

Assumption (f) is confirmed if the molar latent heats of vaporization
are approximately equal and the disturbance is small compared to the
average flows. For the benzene-carbon tetrachloride system, the latent
heats were 7170 and 7350 cal/g mole, respectively, and the liquid molar
densities at 172°F were 0.01035 and 0.00955 g moles/ml, respectively.
The average change in mole fraction on the test plate was approximately
0.06. The theoretical equilibrium line slope varied from 1.09 to 1.06.
These facts confirm assumption (g).

The calculated heat loss was less than 109, of the heat input, approxi-
mating assumption (d).

Assumption (a) distinguishes this model from the other models. The
validity of this assumption is the model’s ability to best describe the
data.

The unsteady state mass balance for the perfectly mixed tray is:

~dx T(t ~ 7 % I
H :it('_) = W=t ") + Lx,y ") — W7 = Lx,7() (D)

If the liquid and vapor mole fractions are redefined as a steady state
value X and y and a transient contribution x(¢) and y(¢), then Eq. (1) is

FI%E—Q = Wper(t) + Lx, i (1) — Wy (0) — Lx,(2)

+ 1‘;t'yn—l + f‘xn+l - VJ—J" - f‘)—cn (2)
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A substitution into Eq. (2) of the steady state mass balance,

17.)_)"—1 +I’:xn+1 - Vj/‘"“if,':() (3)
and the values from assumption (g)
Yu—i(t) = m'x,_4(1) (4)
ylt) = mx,(t) ®
and
AL i ) = 7+ DO+ Trn) ©

The input function is the mole fraction entering plate n from plate
n+ 1, x,;,(t), which can be experimentally measured, and the vapor
input function is calculated from the model applied to plate n — 1. To
calculate x,_,(¢), the additional assumption that x]_, = X,_,, the total
response is the steady state response (i.e., the transient response is in-
significant and so much later in time than the response on plate 7).

Equation (6) written for plate n — 1 is

A%t = Py = 07+ D) ™

The Laplace transforms of Eqgs. (6) and (7) are

O =" X0 - (A RO @ ©
o) = %0 = (" 1) Xk ©
L L
since the initial conditions were
x,00) = 0 (10)
and
X,-1(0) = 0 (11)
In terms of the parameter groups
a = H/L (12)
B=mV|L (13)
g =mVL (14)
« = AL (15)
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Equations (8) and (9), solved for X,(s), give

ﬁl
X.(5) = X, s ] - 16
© = Xoor@ s 4§+ 1 = P (1)
The model frequency response has both real, R (w) and imaginary, I (),
parts.

ARD AID
Rp@) = R"“(w)[(ARD)Z + (AID)2] " I"“(w)[(AID)Z + (ARD)Z]
a7
and
ARD " AID
(18)
where
B BB+
ARD = B + 1 T 0 T @) (19)
_ ﬁ,d,w
AID = aw + T 1 )’ (20)
One observes that
X,5(©) = Ry(@) + j1,(©) S

where X, () is the predicted output of the model.

It may be worthwhile to note that Eq. (8) can be used as the model if
X, 1(8) can be measured inside the system.

For testing the mixing assumptions, the model without mass transfer,
the terms m and m’ are zero.

The flow model corresponding to Eq. (8) is

X (8) = Xy r(9)/(as + 1) (22)
and the frequency response forms are
1
R,(w) = W[Rn+l(w) + wal, (0)] (23)
and
1,(@) = —g 1T (@) — 2R, ()] 249

(aw)* + 1
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Plug Flow Model

The plug flow model uses assumptions (b) through (g). Assumption
(a) 1s replaced by

(@") The fluid moves across the tray with no horizontal mixing, the
effect of a velocity profile is ignored, and the liquid composition is ho-
mogeneous in the vertical direction.

The following additional assumption is required:

(h) Flow on a rectangular plate describes the flow gecometry of a bubble
cap plate,

A differential mass balance applied to a plate segment gives

ax,@)_ L oxJen

T at - - T ,t 25
ot proiwh 0z prlth[y" @0) = Yu-r @D (25)

Substitution of the sum of the steady state and the transient expressions
for xT and " and the mass transfer relations, and subtracting the steady
state equation

_ L ax(d
prpiwh dz  pppiwhz

[35"(2) - )-}n—l(z)] (26)

gives the transient plug flow model

oxzt) L ox(z)

= ) — m'x,_((z,t 27
il L GO GO )

If the dimensionless distance
{=z/Z (28)
and the holdup expression
H = pppywhz 29

are substituted into Eq. (27) along with the parameters defined pre-
viously in Egs. (12) through (15),

a@x,,({,t) - axn(c’t) _
ot aC

Bx (1) + B'x (L) (30)

for plate n, and
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Cx/axn—l(cat) — axn—l(C,I) _

! S Fx, ) @D

for plate n — 1.
The boundary conditions for the plug flow model are

x,((,0) =0 (32)
%,(0,1) = x,4,(t) forr >0 33)
x,-1(£,0) = 0 (34
X, 1(L,t) = x,(2) fort >0 (35)
The Laplace transform of Egs. (30) and (31)
Lx, (8,01 = X.(L.5) (36)
gives
el Mo + B+ B X G (37
and
Pl s 4 p)x,- (0 (38)

The solution of Eq. (38) is
Xo-1(8,5) = X,(L,5) e&5H00€D (39
This equation, substituted into Eq. (37) and solved for X,({,s), gives

X"(C,S) = Xn+l(s) e—(as+ﬂ)§
B X.(1,5) [e™ (SR o=@ B _ f's+IG= 1]

Tt a)s+ B+ B

(40)
The solution for X,(1,s), the solution at the point of measurement, is
Xos1(s)e” @0

ﬁ, —f{at+a’)s+(B+8)] _
{1 ta Tt G ”}
(41)

X(s) = X (Ls) =

The real and imaginary parts of the predicted output of Eq. (41) are
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R (@) = QRM-R,; (w) — QIM I, , (@) 42)
I(w) = QRM I, () + QIM'R,, ;(w) (43)
where
QRM = Re[Rp(B + B) + (o + awlp] — Ie(x + «)oRp — (B + B,
44)
QIM = Te[Rp(8 + B') + (x + «)olp] + Ref(x + a)oRp — (B + §)1p)
(45)
in which
Ry = f + f'Re’ (46)
Iy = (@ + a)o + B¢ 7
Re = ¢~ # cos(ow) (48)
Ie = e~ # sin(aw) (49)
and further,
Re' = e ¥*8) cos[(a + o)) (50
Ie' = e ¥*F)sin[(a + o"w] (51

The flow model for testing mixing without mass transfer is

LX) X

ot 0¢ (52)
for which the Laplace transform is
X\(8) = Xpia() e (53)
and the frequency response solution is
R, (w) = R, (w) cos(aw) + I, (w) sin(ow) (54)
I(w) = I, () cos(aw) — R, (w) sin(ow) (55)

Perfectly Mixed Plate with Time Lag

This model considers the concentration on the plate to be uniform,
i.e., perfect mixing. The downcomers, which couple the plates, are de-
scribed by a plug flow model with no interphase mass transfer. Armstrong
and Wilkinson (/3), Rose and Williams (57), and Moczek et al. (37) have
investigated this model.



14: 24 25 January 2011

Downl oaded At:

TRANSIENT RESPONSE. | 29

Assumptions (a) through (g) apply, and an additional assumption (h),
that the downcomer exhibits liquid phase plug flow with no interphase
mass transfer is required.

Equation (6) modified for this case is

Hdx(t) mV mV + L
2 d Ea d — _— ! 56
T T X, —1(2) T Xp(1) + Xpp1(2) (56)
Downcomer composition is described by
(Gt _ _ L oxLt) 57)
ot H, o

where Hj, is the molar downcomer holdup (moles).
The Laplace transform solutions of Eqgs. (56) and (57) are connected by
the boundary condition

Xi(s) = X,(05)at{ =0 (58)

to give (at the point of measurement { = 1)

X,(5) = X(Ls) = Xou1(5) exp(~rds)/[as Yy ﬂ—i"(—‘—"‘—”]

a's+ p +1
(59
where
1, = LJHp (60)
The Laplace solution without mass transfer is
X(3) = Xpu1(s) exp(—7,8)/[as + 1] (61)
The real and imaginary portions of the predicted response are
R (w) = R, (w)[cos(t,0) — aw sin(r,w)]
+ I+ (w)ow cos(r,w) + sin(z,w)) (62)
and
I (@) = 1,4 (w)[cos(r,m) — aw sin(z,w)]
— R, + (@)ow cos(r,w)+ sin(z,w)) (63)

Turbulent Dispersion Model

The eddy dispersion model assumes that the fluid moves across the
plate with mixing due to the motion of turbulent eddies. One assumes the
mathematical description for diffusion is valid for eddy transport.
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The dispersion model has been discussed by several authors (21, 23,
32, 34, 41, 42, 44). Johnson and Marangozis (36) and Wilkinson and
Armstrong (45) have derived mathematically similar models. Several
authors (13, 14, 20-45) have noticed concentration gradients on distilla-
tion plates, and that plate mixing is due to eddies moving rapidly through
the foam on the plate.

For this derivation assumptions (b) through (h) apply, and assumptions
(a) and (a’) are replaced by

(a”) The fluid mixing is analogous to diffusion; and the effects of
radial dispersion, velocity profile, and molecular diffusion are negligible,

and liquid concentration is homogeneous in the vertical direction.

A differential mass balance applied to the plate gives

xJ ) _ %%z L ax,(z0)
ot L2 whpgp, 0z
—_ [y,Tzt) — y,_ Yzt 64
thpr;_[y" (@1) = Yur (@2)] (64)

where D, is the eddy diffusion or turbulent dispersion coefficient. The
transient equation for plate # is

LD a2 Px(Cn)  ax (L)
a0 p &

- an(CJ) + :Bl'xn—l(c,t) (65)

where
n=2%D, (66)

The boundary conditions for Eq. (65) and for this equation written for
plate n — 1 are:

x,((,0) =0 (67)
x0,6) = x,(1) fort>0 (68)

gim x,((,0) =0 (69)
Xp—1(£,0) =0 (70)

Xoo (L, = x,(1,1)  for1=0 (71)

Im x,_,((t)y=0 (72)

{»-o
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It should be noted that for { > 1, x,_,({,t) is zero and similarly x({,t)
=0for{ <0.
The solution for X, _((,s) is

_ o 4’ -
Xy r@9) = Xo(1,9) exp[ Lol i (as + ﬁ)]{c 1]
(73)
where
n = Z*/Djy (74
The solution for Eq. (65) for X, at the point of measurement is
X(8) = X,(1,9) = X, (9)e?/{1 + Gl — V7] (75)
where
G=pu(2) - v - @+ p] 76)
_n_n
1/1—2 75 1+——(<xs+ﬁ) (77
YR, (. By PO AV (78)
T 24 2o ra
The Laplace transform solution of the model without mass transfer is
1- \/ |4 s
X,() = Xop1(s) exp ——T (79)
&c
n

The frequency response solution for the predicted output of the model
15

R, (@) = (M.R)[cos(P-A)) R4 (w) — sin(P.A) L+ (w)]  (80)

I(w) = M.R)[cos(P.A) I, (w) + sin(PA) R, ()]  (81)

where

(MK) = exp{—”— - 1[1 + <4°‘;“’)2} cos 5} (82)

(PA) = —2_’;{ L+ (‘“‘;“’)2]”4 sin 5} (83)
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and

b=1/2 tan—1(4°‘;“’> (84)

The Perfectly Mixed Dead Zone Model

A dead zone model was first proposed by Turner (58). Hays (59) in-
vestigated a modification of this model for tracer mixing in river channels.

Assumptions (a'’) through (h) are applicable. In addition the following
assumption must be made:

(i) In contact with the main stream, the active zone, there exists a
perfectly mixed dead zone; mass can be transferred from the stream to
the dead zone and vice versa; and all the dispersive flow is in the active
zone.

A mass balance applied to the active zone gives, for plate n
ax,T(z,t) D 0%x,7(z,t) L ox,7(z0)
ot E 822 prpLhw 0z
__r
PrpLIWZ

a'@8) = yuoi ") + Ns  (85)

PepLWh
and for the perfectly mixed dead zone, according to Hays (59, 60),

dx, p" (1) _ PK’
dr prpLAY

[x," (1) = X,,p" (1)) (86)

The steady state equations for plate # are

d*%.(z) L dx(2) V

0=2D — -
b dz? pepiwh dz prpihwZ

[7n(2) — Ju-1(2)] (87)

for the active zone; and for the dead zone
PK’

LAy

0 = [X,(2) — %0l =N, (88)

Usually mass transfer coefficients are written as “Ka” where a is the
ratio of the contact area to the main stream volume

a = PZ|whZ = P[wh (89)
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and for the dead zone
d = PZ|A,Z = P[4, 90)

and K, is the mass transfer coefficient based on the dead zone volume.
The boundary conditions for plate n are

x0,8) = x,,(t) fort>=0 on
lim x({,;t) =0 92)
{—0
x,(£,0) = 0 93)
X,,p0(0) = 0 o9
and for plate n — 1,
Xp-1(LE) = x,(1,1) fort =0 95)
g1im Xo1(1) =0 (96)
X,~1((,0) = 0 07
and
Xp-1,0(0) = 0 98)
with the restrictions that
X&) =0 for{ <0 99)
X,-1t) =0 for{ > 1 (100)

The solution for the dead zone model at the point of measurement is

Xis) = (L) = X, () exp(¥ /{1 + Gl ~ explya ~ ¥)1}  (101)

where
‘/"1:2']_05”2%\/1 +‘:1—a[ﬁ+as< )] (102)

)

Gy~ B { _l/,d—[as(u
vy = — 5"— 2'\/1+ [ﬁ'+as< )] (104)
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and where
t=1/Kd and v =1/K'd (105)
8 = Ka/Kd = ald = A4/A, (106)
0" = K'a/K'd (107

Similarly, the mixing model is

X,() = X(1.8) = X, 1(s) exp[zia - 5 \/ I+ f‘f(l + mi 1)] (108)

The frequency response solution for this model is

R, (w) = R,y (w)Re — I, (w)le (109)
I(@) = R, (w)le + 1, ,(w)Re (110)
where
Re = (M.R.) cos(P.A)) (111)
Ie = (M.R.) sin(P.A.) (112)
and where
non 4o’ w0 _ _
(M.R) = e ﬂ\/ W[l + (@)*]*cos b (113)
(P.A) = —2%\/1 +T$§)§HT91]“ + (@) sin b (114)
b = 1/2tan"!(a) (115)

_ 4w 0 40’2’1
== [1 * few) ¥ 11]/ {_1 ) 1]} (116)

The complete derivations of these equations along with expanded
frequency response forms are available elsewhere (41).

The Advantage of Pulse Testing and Fourier Analysis

A principal advantage of pulse testing is that a smaller amount of
tracer is needed than in step or sinusoidal testing; therefore, liquid and
vapor flow rate changes are less drastic.

A closed form of the time domain solution is possible for the flow
models of the perfectly mixed plate, plug flow, perfectly mixed plate with
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downcomer time lag, and dispersion model for step and dirac inputs. No
simple closed solution is available for the dead zone flow model. The
mass transfer models have not been solved in a closed time domain form.
All these models can be analyzed with frequency response techniques,
making a closed time solution form unnecessary.

When the input and output pulses are measured inside the system,
parameter fitting can be accomplished with frequency response techniques,
and no assumptions are required about the form of the input. In time
domain solutions the input usually must be mathematically described,
such as a step, sinusoid, or impulse input. Physically producing such an
input can be extremely difficult.

Finite difference solutions either in analog or digital simulations require
more computer time than a frequency response solution.

For testing the linear models of this work, the easiest and most direct
method of investigation was pulse testing and Fourier transform analysis.

Fourier Transform of the Puises

The predicted output is calculated from the frequency response of the
model multiplied by the frequency description of the input pulse. The
predicted output is compared to the output pulse Fourier transform by
regression techniques. Hays (59) and others (35, 6/, 62) have described
the method of calculating the pulse Fourier transforms. The Fourier
transform is restricted to a special case of the Laplace transform with the
Laplace transform variable s having no real part (i.e., s = jw), and the
input function having a zero value for times less than r = 0.

Pulse segments, composed of equally spaced time points, are approxi-
mated with a second degree polynomial

Yisr = @ig1t? + byt + ¢y forT;,, <t <T, 117)
The frequency response forms for the i + Ith approximating segment is

Ry, = &{%[ai+l — a]] sin(T,w) — [b;y, — Qa;T; + b)) COS(’@)}

(118)
Iy = %{Z[am ~ 4] cos(Tiw) — [bisy — QaiT; + )] sin(tiw)}
w W
(119)

The real and imaginary parts for the entire pulse are calculated by summing
over all approximating sections for each desired frequency.
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Regression

The minimum integral of the squared error is a convenient basis for a
fitting procedure. This quantity is defined as

® = r Lot — yo(OF dt = r e di (120)
0 0

Parseval’s theorem applied to Eq. (20) gives
P = j [e(1))* dt = lj |E(jw)|? dow (121)
0 TJo

where E(jw) is the Fourier transform of e(¢). Equation (121) shows that
there is a direct correlation between minimization of the squared error in
the time domain and a minimization of the absolute squared error of the
frequency response.

E(jw) is defined as

E(jw) = Y,(jo) = Y, (jo) (122)

where Y,(jw) and Y ,( jo) are the transforms of y,(¢) and y,(¢), respectively,
or in terms of real and imaginary quantities
1 o
¢ = ;L {[Ry(@) — Ry + [1,(@) — ()]} do (123)

In data processing the ® function must be made discrete. Allowing
Z(w,) to be the integrand in Eq. (123), the @ relation is

o =13 20, (124)

Q|-

Summation over an infinite range of frequencies is physically im-
practical, so the summation is truncated at some finite frequency limit,
w,. Sokolnikoff and Redheffer (63) state that the partial sums of a Fourier
series give a smaller mean square error than any other linear combina-
tion, and successive terms in the Fourier series tend to zero as the number
of terms increases. These statements imply that the function has been
approximated by the best least squares method available, and that if o,
has been chosen sufficiently large, the loss in accuracy is small. Truncation
of the frequency spectrum is beneficial in that it discards erroneous data
fluctuations which occur at high frequencies. These fluctuations are
caused by inaccuracies in the data and the use of parabolic segments to
represent continuous tracer curves.
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Data Reduction

Linear relationships existed between concentration and conductivity,
and between refractive index and mole fraction of the form

v=gqg +p (125)

In pulse testing the function of interest is the deviation term; the
base or steady state value must be subtracted from the measured value;
thus

v — vy =g(g — go) (126)
or
V. = 4G, (127)

These constants were determined in the calibration of the conductivity
cells and the recording refractometers.

In the distillation column the sample time lag had to be corrected, so
that the concentration was a function of time at the downcomer base, not
at the refractometers. The correction was made by adding sampling time
back to the transformed data with the terms

R (w) = R, (®) cos{T,w) — sin[Twl,, ()] {128)
and
I(®) = R,,.(0) sin(Tw) + cos[T,wl,, ()] (129)
where these terms are defined as
R (w), I{w) = corrected real and imaginary data parts
R,(®), 1,,.(w) = measured transform data
T, = sample time lag

The sample time lag was calculated from the sample lines flow rate
taken at the end of each run.

SYMBOLS

area of active zone (ft?)
A,  area of dead zone (ft?)
a ratio of contact area to volume of the main
stream (ft2/ft%)
a;, Gy, A3, Ugy Ay Aig g polynomial coefficients
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by, b2, by, by s
Dy, Dy

d
d.

E(jo)
e(?)

G,

Gn’ Gn+1’ Gn—l

o Q)

- &é:mml

I(w)
Ln(®)
Ine(®)

SITTEL AND FISHER

polynomial coefficients

longitudinal or eddy dispersion coefficient
(ft*/sec)

ratio of contact area to volume of the dead
zone (ft?/ft>)

difference between pairs of data when sub-
jected to two effects

frequency domain error

time domain error

F factor, u/py, [ft’ square root of gas
density in Ibm/ft*/sec (square feet of bubbl-
ing area)]

repetitive frequency domain grouping in
dispersion model,

ﬁ'/[(%)w — Y= s+ ﬁ)]

repetitive frequency domain grouping in
dead zone model,

prfu(2) = vi - [(1+ )|}

effective deviation in measured quantity,
g — 9o

effective deviation quantity for plates 7,
n + 1, and » — 1, respectively

normalized variable

measured variable, either conductivity or
refractive index

base conductance or steady state refractive
index

molar holdup (Ib moles)

molar holdup in the downcomer (b moles)
total liquid height on a plate (ft)

imaginary part of the i + 1th approximat-
ing segment

corrected imaginary part of the data
imaginary part of the model function
imaginary part of the measured transform
data
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In(m)’ In+ 1((0), In— l(w)

1 p(w).
J

K

Kl

L

L,

R (w)

R(®)

Rpne()

Rn(w)’ Rn+ l(w)’ Rn— 1(60)

R,(w)
N

T,

s

Tl’ TZ’ Ti

439

imaginary parts of the data for plates n,
n + 1, and r — 1, respectively

predicted imaginary part of the model
imaginary number, ./ —1

mass transfer coefficient (Ib moles/sec ft?)
mass transfer coefficient, K’ = Kpjpp (ft/
sec)

L factor, liquid flow rate [gal/min (average
feet tray width)]

Laplace transform operator

L) = r g(r)e™* di

molar liquid flow rate (1b moles/sec)
constant in equilibrium relationship y =
mx + b

equilibrium relationship on plate n — 1
mass flux from dead zone (Ib moles/ft? sec)
contact length between zones (ft)

a constant

a constant

real part of the i+ lth approximating
segment

corrected real part of the data

real part of the model function

real measured part of the transformed data
real parts of the data for plates n, n + 1,
and n — 1, respectively

real predicted part of the model

Laplace transform variable

sample time lag (sec)

time at the end of the Ist, 2nd, and ith
approximating segments, respectively

time (sec)

Student’s statistic calculated for the dif-
ference variable

value for the two sided ¢ statistic for the
95% confidence limit

u factor, linear gas velocity [ft3/sec (square
feet of tray bubbling area)]
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Xu($)s Xps1(8)y X, 1 ()
X(@)y Xy (@), X,_ (@)

D¢ n, p(w)
X, (@)

X
X4

XT

x(1)
X

Y,(jw)

Y, (jw)

y

¥(t)

Yolt)

yt)
y1(1), y2(2)
yT

o, o

B. B, B

SITTEL AND FISHER

effective deviation in measured quantity
molar gas flow rate (Ib moles/sec)

mass variable either concentration or mole
fraction

base concentration or steady state mole
fraction

outlet weir height (in.)

width of distillation tray (ft)

total length of travel on a distillation plate
4y

Laplace transform of mole fraction func-
tion on plates #, n + 1, and n — 1, respec-
tively

Fourier transform of mole fraction func-
tion on plates n, n + 1, and n — 1, respec-
tively

predicted output of model for plate n
composition on a perfectly mixed plate in
the perfectly mixed plate with time lag
model

liquid mole fraction

liquid mole fraction in dead zone

total liquid mole fraction, xT = x(¢) + %
transient liquid mole fraction

steady state liquid mole fraction

Fourier transform of observed output
Fourier transform of predicted output
vapor phase mole fraction

transient vapor mole fraction

observed output

predicted output

first and second approximating polynomials
total vapor mole fraction y7 = y(¢#) + ¥
steady state vapor mole fraction

total tray length (ft)

integrand of Eq. (124)

length on a tray (ft)

residence time on tray n and n — 1, re-
spectively (sec)

mass transfer terms on trays n, n — 1,
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/]

0,8

L7

41

n — 2, respectively, either m ¥/ Lor AK,am/
Lpgp’

incremental distance (ft)

reduced length, { = z/Z

dispersion coefficient function, D,/X?, on
plates » and n — 1, respectively (sec)

ratio of dead zone cross sectional area to
active zone area for plates n and n — 1,
respectively

froth density cubic feet of liquid per cubic
foot of froth

liquid density (Ibm/ft3)

clear liquid density (Ib moles/ft?)

indicates summation

inverse of dead zone mass transfer coefficient
times the ratio of dead zone cross sectional
area to volume on plates #n and n — 1,
respectively (sec)

residence time in downcomers on plates »
and n — 1, respectively (sec)

sum or integral of the squared error
repetitive frequency domain grouping in
dispersion model,

3w oL+ s+ )

20 2o

repetitive frequency domain grouping in
dead zone model,

no_n 4o 0
20 2o 1+11|:S<1+rs+1>+ﬂ]

repetitive frequency domain grouping in
dispersion model,

7 ’

’7— ;’a\/1 +——(o¢s+B)

repetitive frequency domain grouping in
dead zone model,

’7 . 4o 0 ,
+2¢x 1+;—[o¢s<l+ ,S+1>+B:|
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[

AL AW

%o N

11.
12.

13.
4.
15.
16.

17.
18.

19.
20.

21.
22.

23
24

/N repetitive frequency domain grouping in
dispersion model,

n ] 4o
2a+2a\/1 +—n—(as+[)’)
w  frequency (sec™!)

cutoff frequency (sec™ ")
*® denotes convolution

)
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